Evidences of Conformational Fluctuations of 2-methylaminofluorenone and **2-dimethylaminofluorenone in Polar Solvents**

M. Józefowicz^a, J. R. Heldt^a, and J. Heldt^{a,b}

^a Institute of Experimental Physics, University of Gdańsk, ul. Wita Stwosza 57, 80-952 Gdańsk, Poland
^b Institute of Physics, Pomeranian Pedagogical Academy, ul. Arciszewskiego 23A, 76-200 Słupsk, Poland

Reprint requests to Dr. J. H.; E-mail: fizjh@julia.univ.gda.pl

Z. Naturforsch. **59a**, 105 – 112 (2004); received July 8, 2003

The absorption and fluorescence spectra of 2-methylaminofluorenone (2MAFI) and 2-dimethylaminofluorenone (2DMAFI) were determined at 293 K in a variety of solvents with different polarities. The spectral data were used, in combination with the 2MAFI and 2DMAFI ground state dipole moment (μ_g), to evaluate μ_e of the S_1 state, to determine the outer-sphere solvent reorganization energy λ_{outer} , and the intramolecular reorganization energies: λ_1^* (associated with vibrations for which hv < kT) and $\lambda_1(hv > kT)$. At 77 K the fluorescence spectra in a non-polar solvent are shifted to longer wavelengths. In polar solvents, for both molecules the behavior is opposite. The fluorescence decay data for 2MAFI and 2DMAFI in non-polar solvents are very well fitted by one-exponential functions, while in polar solvents by two-exponential functions. The spectroscopic data distinctly show that both studied molecules in polar solvents form an inhomogeneous emitting system.

Key words: 2-methylaminofluorenone; 2-dimethylaminofluorenone; Inhomogeneous Broadening; Reorganization Energy.